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Abstract

Spatial-temporal reasoning is a challenging task in
Artificial Intelligence (Al) due to its demanding but unique
nature: a theoretic requirement on representing and rea-
soning based on spatial-temporal knowledge in mind, and
an applied requirement on a high-level cognitive system ca-
pable of navigating and acting in space and time. Recent
works have focused on an abstract reasoning task of this
kind—Raven’s Progressive Matrices (RPM). Despite the
encouraging progress on RPM that achieves human-level
performance in terms of accuracy, modern approaches have
neither a treatment of human-like reasoning on generaliza-
tion, nor a potential to generate answers. To fill in this gap,
we propose a neuro-symbolic Probabilistic Abduction and
Execution (PrAE) learner; central to the PrAE learner is
the process of probabilistic abduction and execution on a
probabilistic scene representation, akin to the mental ma-
nipulation of objects. Specifically, we disentangle percep-
tion and reasoning from a monolithic model. The neural
visual perception frontend predicts objects’ attributes, later
aggregated by a scene inference engine to produce a prob-
abilistic scene representation. In the symbolic logical rea-
soning backend, the PrAE learner uses the representation
to abduce the hidden rules. An answer is predicted by exe-
cuting the rules on the probabilistic representation. The en-
tire system is trained end-to-end in an analysis-by-synthesis
manner without any visual attribute annotations. Extensive
experiments demonstrate that the PrAE learner improves
cross-configuration generalization and is capable of ren-
dering an answer, in contrast to prior works that merely
make a categorical choice from candidates.

1. Introduction

While “thinking in pictures” [13], i.e., spatial-temporal
reasoning, is effortless and instantaneous for humans, this
significant ability has proven to be particularly challeng-

* indicates equal contribution.

ing for current machine vision systems [27]. With the
promising results [13] that show the very ability is strongly
correlated with one’s logical induction performance and
a crucial factor for the intellectual history of technology
development, recent computational studies on the prob-
lem focus on an abstract reasoning task relying heavily
on “thinking in pictures”—Raven’s Progressive Matrices
(RPM) [3, 24, 51, 52]. In this task, a subject is asked to
pick a correct answer that best fits an incomplete figure ma-
trix to satisfy the hidden governing rules. The ability to
solve RPM-like problems is believed to be critical for gener-
ating and conceptualizing solutions to multi-step problems,
which requires mental manipulation of given images over
a time-ordered sequence of spatial transformations. Such
a task is also believed to be characteristic of relational and
analogical reasoning and an indicator of one’s fluid intelli-
gence [0, 18,26, 55].

State-of-the-art algorithms incorporating a contrasting
mechanism and perceptual inference [ 17, 72] have achieved
decent performance in terms of accuracy. Nevertheless,
along with the improved accuracy from deep models come
critiques on its transparency, interpretability, generalization,
and difficulty to incorporate knowledge. Without explic-
itly distinguishing perception and reasoning, existing meth-
ods use a monolithic model to learn correlation, sacrificing
transparency and interpretability in exchange for improved
performance [17, 20, 53, 59, 70, 72, 75]. Furthermore, as
shown in experiments, deep models nearly always overfit to
the training regime and cannot properly generalize. Such a
finding is consistent with Fodor [1 1] and Marcus’s [43, 44]
hypothesis that human-level systematic generalizability is
hardly compatible with classic neural networks; Marcus
postulates that a neuro-symbolic architecture should be re-
cruited for human-level generalization [7, 8, 9, 41, 42, 66].

Another defect of prior methods is the lack of top-down
and bottom-up reasoning [72]: Human reasoning applies
a generative process to abduce rules and execute them to
synthesize a possible solution in mind, and discriminatively
selects the most similar answer from choices [19]. This bi-
directional reasoning is in stark contrast to discriminative-
only models, solely capable of making a categorical choice.



Psychologists also call for weak attribute supervision in
RPM. As isolated Amazonians, absent of schooling on
primitive attributes, could still correctly solve RPM [5, 25],
an ideal computational counterpart should be able to learn
it absent of visual attribute annotations. This weakly-
supervised setting introduces unique challenges: How to
jointly learn these visual attributes given only ground-truth
images? With uncertainties in perception, how to abduce
hidden logic relations from it? How about executing the
symbolic logic on inaccurate perception to derive answers?

To support cross-configuration generalization and an-
swer generation, we move a step further towards a neuro-
symbolic model with explicit logical reasoning and human-
like generative problem-solving while addressing the chal-
lenges. Specifically, we propose the Probabilistic Abduc-
tion and Execution (PrAE) learner; central to it is the pro-
cess of abduction and execution on the probabilistic scene
representation. Inspired by Fodor, Marcus, and neuro-
symbolic reasoning [15, 40, 67, 68], the PrAE learner dis-
entangles the previous monolithic process into two separate
modules: a neural visual perception frontend and a sym-
bolic logical reasoning backend. The neural visual frontend
operates on object-based representation [15, 29, 40, 67, 68]
and predicts conditional probability distributions on its at-
tributes. A scene inference engine then aggregates all object
attribute distributions to produce a probabilistic scene rep-
resentation for the backend. The symbolic logical backend
abduces, from the representation, hidden rules that govern
the time-ordered sequence via inverse dynamics. An exe-
cution engine executes the rules to generate an answer rep-
resentation in a probabilistic planning manner [12, 21, 31],
instead of directly making a categorical choice among the
candidates. The final choice is selected based on the diver-
gence between the generated prediction and the given candi-
dates. The entire system is trained end-to-end with a cross-
entropy loss and a curricular auxiliary loss [53, 70, 72] with-
out any visual attribute annotations. Fig. 1 compares the
proposed PrAE learner with prior methods.

The unique design in PrAE connects perception and rea-
soning and offers several advantages: (i) With an inter-
mediate probabilistic scene representation, the neural vi-
sual perception frontend and the symbolic logical reason-
ing backend can be swapped for different task domains,
enabling a greater extent of module reuse and combina-
torial generalization. (ii) Instead of blending perception
and reasoning into one monolithic model without any ex-
plicit reasoning, probabilistic abduction offers a more infer-
pretable account for reasoning on a logical representation.
It also affords a more detailed analysis into both percep-
tion and reasoning. (iii) Probabilistic execution permits a
generative process to be integrated into the system. Sym-
bolic logical constraints can be transformed by the execu-
tion engine into a forward model [28] and applied in a prob-
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Flgure 1. leferences between (a) prior methods and (b) the pro-
posed approach. Prior methods do not explicitly distinguish per-
ception and reasoning; instead, they use a monolithic model and
only differ in how features are manipulated, lacking semantics and
probabilistic interpretability. In contrast, the proposed approach
disentangles this monolithic process: It perceives each panel of
RPM as a set of probability distributions of attributes, performs
logical reasoning to abduce the hidden rules that govern the time-
ordered sequence, and executes the abduced rules to generate an-
swer representations. A final choice is made based on the diver-
gence between predicted answer distributions and each candidate’s
distributions; see Section 2 for a detailed comparison.

abilistic manner to predict the final scene representation,
such that the entire system can be trained by analysis-by-
synthesis [4, 14, 16,22, 23,36, 62, 63, 64, 65, 69, 77]. (iv)
Instead of making a deterministic decision or drawing lim-
ited samples, maintaining probabilistic distributions brings
in extra robustness and fault tolerance and allows gradients
to be easily propagated.

This paper makes three major contributions: (i) We pro-
pose the Probabilistic Abduction and Execution (PrAE)
learner. Unlike previous methods, the PrAE learner disen-
tangles perception and reasoning from a monolithic model
with the reasoning process realized by abduction and execu-
tion on a probabilistic scene representation. The abduction
process performs interpretable reasoning on perception re-
sults. The execution process adds to the learner a generative
flavor, such that the system can be trained in an analysis-by-
synthesis manner without any visual attribute annotations.
(i1) Our experiments demonstrate the PrAE learner achieves
better generalization results compared to existing methods
in the cross-configuration generalization task of RPM. We
also show that the PrAE learner is capable of generating an-
swers for RPM questions via a renderer. (iii) We present
analyses into the inner functioning of both perception and
reasoning, providing an interpretable account of PrAE.



2. Related Work

Neuro-Symbolic Visual Reasoning Neuro-symbolic
methods have shown promising potential in tasks involving
an interplay between vision and language and vision and
causality. Qi ef al. [49, 50] showed that action recognition
could be significantly improved with the help of grammar
parsing, and Li e al. [33] integrated perception, parsing,
and logics into a unified framework. Of particular rele-
vance, Yi et al. [68] first demonstrated a prototype of a
neuro-symbolic system to solve Visual Question Answer-
ing (VQA) [1], where the vision system and the language
parsing system were separately trained with a final symbolic
logic system applying the parsed program to deliver an an-
swer. Mao et al. [40] improved such a system by making
the symbolic component continuous and end-to-end train-
able, despite sacrificing the semantics and interpretability
of logics. Han et al. [ 15] built on [40] and studied the meta-
concept problem by learning concept embeddings. A re-
cent work investigated temporal and causal relations in col-
lision events [67] and solved it in a way similar to [68].
The proposed PrAE learner is similar to but has fundamen-
tal differences from existing neuro-symbolic methods. Un-
like the method proposed by Yi et al. [67, 68], our approach
is end-to-end trainable and does not require intermediate
visual annotations, such as ground-truth attributes. Com-
pared to [40], our approach preserves logic semantics and
interpretability by explicit logical reasoning involving prob-
abilistic abduction and execution in a probabilistic planning
manner [12, 21, 31].

Computational Approaches to RPM Initially pro-
posed as an intelligence quotient test into general intelli-
gence and fluid intelligence [51, 52], Raven’s Progressive
Matrices (RPM) has received notable attention from the re-
search community of cognitive science. Psychologists have
proposed reasoning systems based on symbolic representa-
tions and discrete logics [3, 37, 38, 39]. However, such log-
ical systems cannot handle visual uncertainty arising from
imperfect perception. Similar issues also pose challenges
to methods based on image similarity [35, 45, 46, 47, 54].
Recent works approach this problem in a data-driven man-
ner. The first automatic RPM generation method was pro-
posed by Wang and Su [60]. Santoro et al. [53] extended
it using procedural generation and introduced the Wild Re-
lational Network (WReN) to solve the problem. Zhang et
al. [70] and Hu et al. [20] used stochastic image gram-
mar [76] and provided structural annotations to the dataset.
Unanimously, existing methods do not explicitly distinguish
perception and reasoning; instead, they use one monolithic
neural model, sacrificing interpretability in exchange for
better performance. The differences in previous methods
lie in how features are manipulated: Santoro et al. [53]
used the relational module to extract final features, Zhang
et al. [70] stacked all panels into the channel dimension and

fed them into a residual network, Hill et al. [17] prepared
the data in a contrasting manner, Zhang et al. [72] com-
posed the context with each candidate and compared their
potentials, Wang et al. [59] modeled the features by a mul-
tiplex graph, and Hu et al. [20] integrated hierarchical fea-
tures. Zheng et al. [75] studied a teacher-student setting in
RPM, while Steenbrugge et al. [57] focused on a genera-
tive approach to improve learning. Concurrent to our work,
Spratley et al. [56] unsupervisedly extracted object embed-
dings and conducted reasoning via a ResNet. In contrast,
PrAE is designed to address cross-configuration general-
ization and disentangles perception and reasoning from a
monolithic model, with symbolic logical reasoning imple-
mented as probabilistic abduction and execution.

3. The PrAE Learner

Problem Setup In this section, we explain our ap-
proach to tackling the RPM problem. Each RPM instance
consists of 16 panels: 8 context panels form an incomplete
3 x 3 matrix with a 9th missing entry, and 8 candidate pan-
els for one to choose. The goal is to pick one candidate
that best completes the matrix to satisfy the latent governing
rules. Existing datasets [20, 53, 60, 70] assume fixed sets of
object attributes, panel attributes, and rules, with each panel
attribute governed by one rule. The value of a panel attribute
constrains the value of the corresponding object attribute for
each object in it.

Overview The proposed neuro-symbolic PrAE learner
disentangles previous monolithic visual reasoning into two
modules: the neural visual perception frontend and the sym-
bolic logical reasoning backend. The frontend uses a CNN
to extract object attribute distributions, later aggregated by
a scene inference engine to produce panel attribute distri-
butions. The set of all panel attribute distributions in a
panel is referred to as its probabilistic scene representa-
tion. The backend retrieves this compact scene representa-
tion and performs logical abduction and execution in order
to predict the answer representation in a generative manner.
A final choice is made based on the divergence between the
prediction and each candidate. Using REINFORCE [61],
the entire system is trained without attribute annotations in
a curricular manner; see Fig. 2 for an overview of PrAE.

3.1. Neural Visual Perception

The neural visual perception frontend operates on each
of the 16 panels independently to produce probabilistic
scene representation. It has two sub-modules: object CNN
and scene inference engine.

Object CNN Given an image panel I, a sliding win-
dow traverses its spatial domain and feeds each image re-
gion into a 4-branch CNN. The 4 CNN branches use the
same LeNet-like architecture [32] and produce the probabil-
ity distributions of object attributes, including objectiveness
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Figure 2. An overview of learning and reasoning of the proposed PrAE learner. Given an RPM instance, the neural perception frontend
(in red) extracts probabilistic scene representation for each of the 16 panels (8 contexts + 8 candidates). The Object CNN sub-module
takes in each image region returned by a sliding window to produce object attribute distributions (over objectiveness, type, size, and
color). The Scene Inference Engine sub-module (in pink) aggregates object attribute distributions from all regions to produce panel
attribute distributions (over position, number, type, size, and color). Probabilistic representation for context panels is fed into the symbolic
reasoning backend (in blue), which abduces hidden rule distributions for all panel attributes (upper-right figure) and executes chosen rules
on corresponding context panels to generate the answer representation (lower-right figure). The answer representation is compared with
each candidate representation from the perception frontend; the candidate with minimum divergence from the prediction is chosen as the
final answer. The lower-right figure is an example of probabilistic execution on the panel attribute of Number; see Section 3.2 for the exact

computation process.

(whether the image region has an object), type, size, and
color. Of note, the distributions of type, size, and color are
conditioned on objectiveness being true. Attribute distribu-
tions of each image region are kept and sent to the scene
inference engine to produce panel attribute distributions.

Scene Inference Engine The scene inference engine
takes in the outputs of object CNN and produces panel at-
tribute distributions (over position, number, type, size, and
color) by marginalizing over the set of object attribute dis-
tributions (over objectiveness, type, size, and color). Take
the panel attribute of Number as an example: Given N ob-
jectiveness probability distributions produced by the object
CNN for NV image regions, the probability of a panel having
k objects can be computed as

N
2 [Ires=8).

B°e{0,1}V j=1
|B®|=k

P(Number = k) =

where B¢ is an ordered binary sequence corresponding to
objectiveness of the N regions, | - | the number of 1 in the
sequence, and P(b7) the objectiveness distribution of the
jth region. We assume k& > 1 in each RPM panel, leave
P(Number = 0) out, and renormalize the probability to

have a sum of 1. The panel attribute distributions for po-
sition, type, size, and color, can be computed similarly.

We refer to the set of all panel attribute distributions in
a panel its probabilistic scene representation, denoted as s,
with the distribution of panel attribute a denoted as P(s%).

3.2. Symbolic Logical Reasoning

The symbolic logical reasoning backend collects proba-
bilistic scene representation from 8 context panels, abduces
the probability distributions over hidden rules on each panel
attribute, and executes them on corresponding panels of the
context. Based on a prior study [3], we assume a set of
symbolic logical constraints describing rules is available.
For example, the Arithmetic plus rule on Number can be
represented as: for each row (column), VI,m > 1

(Number; = m) A (Numbers =) A (Numbers =m +1), (2)

where Number; denotes the number of objects in the ¢th
panel in a row (column). With access to such constraints,
we use inverse dynamics to abduce the rules in an instance.
They can also be transformed into a forward model and exe-
cuted on discrete symbols: For instance, Arithmetic plus
deterministically adds Number in the first two panels to ob-
tain the Number of the last panel.



Probabilistic Abduction Given the probabilistic
scene representation of 8 context panels, the probabilistic
abduction engine calculates the probability of rules for each
panel attribute via inverse dynamics. Formally, for each
rule r on a panel attribute a,

P(r® | Iy,....Is) = P(r* | I, ..., I§), 3)

where I; denotes the ith context panel, and /;* the compo-
nent of context panel I; corresponding to a. Note Eq. (3)
generalizes inverse dynamics [28] to 8 states, in contrast to
that of a conventional MDP.

To model P(r® | I{, ..., I%), we leverage the compact
probabilistic scene representation with respect to attribute a
and logical constraints:

8
P If,... I8 Y [[PGsi =58, @

Seevalid(re) i=1

where valid(-) returns a set of attribute value assignments
of the context panels that satisfy the logical constraints of
r®, and 7 indexes into context panels. By going over all
panel attributes, we have the distribution of hidden rules for
each of them.

Take Arithmetic plus on Number as an exam-
ple. A row-major assignment for context panels can be
[1,2,3,1,3,4,1,2] (as in Fig. 2), whose probability is com-
puted as the product of each panel having k objects as in
Eq. (1). Summing it with other assignment probabilities
gives an unnormalized rule probability.

We note that the set of valid states for each 7 is a product
space of valid states on each row (column). Therefore, we
can perform partial marginalization on each row (column)
first and aggregate them later to avoid directly marginal-
izing over the entire space. This decomposition will help
reduce computation and mitigate numerical instability.

Probabilistic Execution For each panel attribute a,
the probabilistic execution engine chooses a rule from the
abduced rule distribution and executes it on correspond-
ing context panels to predict, in a generative fashion, the
panel attribute distribution of an answer. While tradition-
ally, a logical forward model only works on discrete sym-
bols, we follow a generalized notion of probabilistic execu-
tion as done in probabilistic planning [21, 31]. The prob-
abilistic execution could be treated as a distribution trans-
formation that redistributes the probability mass based on
logical rules. For a binary rule r on a,

P(s§ = 59)oc P(s§ = S3)P(si = ST), (5)
(Sg,S‘f)epre(r“)
5§=F(S5,5¢57%)
where f is the forward model transformed from logical con-
straints and pre(-) the rule precondition set. Predicted dis-
tributions of panel attributes compose the final probabilistic
scene representation s .

As an example of Arithmetic plus on Number, 4 ob-
jects result from the addition of (1,3), (2,2), and (3,1).
The probability of an answer having 4 objects is the sum of
the instances’ probabilities.

During training, the execution engine samples a rule
from the abduced probability. During testing, the most
probable rule is chosen.

Candidate Selection With a set of predicted panel at-
tribute distributions, we compare it with that from each can-
didate answer. We use the Jensen—Shannon Divergence
(JSD) [34] to quantify the divergence between the predic-
tion and the candidate, i.e.,

d(sg.s:) = ) Disn(P(s}) || P(sf)), ©)

where the summation is over panel attributes and ¢ indexes
into the candidate panels. The candidate with minimum di-
vergence will be chosen as the final answer.

Discussion The design of reasoning as probabilistic
abduction and execution is a computational and inter-
pretable counterpart to human-like reasoning in RPM [3].
By abduction, one infers the hidden rules from context pan-
els. By executing the abduced rules, one obtains a prob-
abilistic answer representation. Such a probabilistic rep-
resentation is compared with all candidates available; the
most similar one in terms of divergence is picked as the final
answer. Note that the probabilistic execution adds the gen-
erative flavor into reasoning: Eq. (5) depicts the predicted
panel attribute distribution, which can be sampled and sent
to a rendering engine for panel generation. The entire pro-
cess resembles bi-directional inference and combines both
top-down and bottom-up reasoning missing in prior works.
In the meantime, the design addresses challenges mentioned
in Section 1 by marginalizing over perception and abducing
and executing rules probabilistically.

3.3. Learning Objective

During training, we transform the divergence in Eq. (6)
into a probability distribution by

P(Answer = i)ocexp(—d(sy, s;)) @)

and minimize the cross-entropy loss. Note that the learn-
ing procedure follows a general paradigm of analysis-by-
synthesis [4, 14, 16,22, 23,36, 62, 63, 64, 65, 69, 77]: The
learner synthesizes a result and measures difference analyt-
ically.

As the reasoning process involves rule selection, we use
REINFORCE [61] to optimize:

ngn Ep@y [L(P(Answer; 1), y)], (3)

where 6 denotes the trainable parameters in the object CNN,
P(r) packs the rule distributions over all panel attributes,



¢ is the cross-entropy loss, and y is the ground-truth an-
swer. Note that here we make explicit the dependency of
the answer distribution on rules, as the predicted probabilis-
tic scene representation s ¢ is dependent on the rules chosen.
In practice, the PrAE learner experiences difficulty in
convergence with cross-entropy loss only, as the object
CNN fails to produce meaningful object attribute predic-
tions at the early stage of training. To resolve this issue, we
jointly train the PrAE learner to optimize the auxiliary loss,
as discussed in recent literature [53, 70, 72]. The auxiliary
loss regularizes the perception module such that the learner
produces the correct rule prediction. The final objective is

mein E p(ry [((P(Answer; 7), y)] + Z AYU(P(r),y"), 9)

where A% is the weight coefficient, P(r®) the distribution
of the abduced rule on a, and y® the ground-truth rule. In
reinforcement learning terminology, one can treat the cross-
entropy loss as the negative reward and the auxiliary loss as
behavior cloning [58].

3.4. Curriculum Learning

In preliminary experiments, we notice that accurate ob-
jectiveness prediction at the early stage is essential to the
success of the learner, while learning without auxiliary
will reinforce the perception system to produce more ac-
curate object attribute predictions in the later stage when all
branches of the object CNN are already warm-started. This
observation is consistent with human learning: One learns
object attributes only after they can correctly distinguish ob-
jects from the scene, and their perception will be enhanced
with positive signals from the task.

Based on this observation, we train our PrAE learner in
a 3-stage curriculum [2]. In the first stage, only parameters
corresponding to objectiveness are trained. In the second
stage, objectiveness parameters are frozen while weights re-
sponsible for type, size, and color prediction are learned. In
the third stage, we perform joint fine-tuning for the entire
model via REINFORCE [61].

4. Experiments

We demonstrate the efficacy of the proposed PrAE
learner in RPM. In particular, we show that the PrAE
learner achieves the best performance among all baselines
in the cross-configuration generalization task of RPM. In
addition, the modularized perception and reasoning process
allows us to probe into how each module performs in the
RPM task and analyze the PrAE learner’s strengths and
weaknesses. Furthermore, we show that probabilistic scene
representation learned by the PrAE learner can be used to
generate an answer when equipped with a rendering engine.

4.1. Experimental Setup

We evaluate the proposed PrAE learner on RAVEN [70]
and I-RAVEN [20]. Both datasets consist of 7 distinct
RPM configurations, each of which contains 10,000 sam-
ples, equally divided into 6 folds for training, 2 folds for
validation, and 2 folds for testing. We compare our PrAE
learner with simple baselines of LSTM, CNN, and ResNet,
and strong baselines of WReN [53], ResNet+DRT [70],
LEN [75], CoPINet [72], MXGNet [59], and SRAN [20].
To measure cross-configuration generalization, we train all
models using the 2x2Grid configuration due to its proper
complexity for probability marginalization and a sufficient
number of rules on each panel attribute. We test the models
on all other configurations. All models are implemented in
PyTorch [48] and optimized using ADAM [30] on an Nvidia
Titan Xp GPU. For numerical stability, we use log probabil-
ity in PrAE.

4.2. Cross-Configuration Generalization

Table 1 shows the cross-configuration generalization per-
formance of different models. While advanced models like
WReN, LEN, MXGNet, and SRAN have fairly good fit-
ting performance on the training regime, these models fail
to learn transferable representation for other configurations,
which suggests that they do not learn logics or any forms
of abstraction but visual appearance only. Simpler base-
lines like LSTM, CNNs, ResNet, and ResNet+DRT show
less severe overfitting, but neither do they demonstrate sat-
isfactory performance. This effect indicates that using only
deep models in abstract visual reasoning makes it very diffi-
cult to acquire the generalization capability required in sit-
uations with similar inner mechanisms but distinctive ap-
pearances. By leveraging the notion of contrast, CoPINet
improves generalization performance by a notable margin.

Equipped with symbolic reasoning and neural percep-
tion, not only does the PrAE learner achieve the best per-
formance among all models, but it also shows performance
better than humans on three configurations. Compared to
baselines trained on the full dataset (see supplementary ma-
terial), the PrAE learner surpasses all other models on the
2x2Grid domain, despite other models seeing 6 times more
data. The PrAE learner does not exhibit strong overfitting
either, achieving comparable and sometimes better perfor-
mance on Center, L-R, and U-D. However, limitations of
the PrAE learner do exist. In cases with overlap (O-IC and
0-1G), the performance decreases, and a devastating result
is observed on 3x3Grid. The first failure is due to the do-
main shift in the region appearance that neural models can-
not handle, and the second could be attributed to marginal-
ization over probability distributions of multiple objects in
3x3Grid, where uncertainties from all objects accumulate,
leading to inaccurate abduced rule distributions. These ob-
servations are echoed in our analysis shown next.



Method Acc Center 2x2Grid 3x3Grid L-R U-D O-IC O-IG

WReN 9.86/14.87 8.65/14.25 29.60,/20.50 9.75/15.70 4.40/13.75 5.00/13.50 5.70/14.15 5.90/12.25
LSTM 12.81/12.52 12.70/12.55 13.80/13.50 12.90/11.35 12.40/14.30 12.10/11.35 12.45/11.55 13.30/13.05
LEN 12.29/13.60 11.85/14.85 41.40/18.20  12.95/13.35 3.95/12.55 3.95/12.75 5.55/11.15 6.35/12.35
CNN 14.78/12.69 13.80/11.30 18.25/14.60  14.55/11.95  13.35/13.00 15.40/13.30 14.35/11.80 13.75/12.85
MXGNet 20.78/13.07 12.95/13.65 37.05/13.95  24.80/12.50  17.45/12.50 16.80/12.05 18.05/12.95 18.35/13.90
ResNet 24.79/13.19 24.30/14.50 25.05/14.30  25.80/12.95  23.80/12.35 27.40/13.55 25.05/13.40 22.15/11.30
ResNet+DRT ~ 31.56/13.26 31.65/13.20 39.55/14.30  35.55/13.25  25.65/12.15 32.05/13.10 31.40/13.70 25.05/13.15
SRAN 15.56/29.06 18.35/37.55 38.80/38.30  17.40/29.30 9.45/29.55 11.35/28.65 5.50/21.15 8.05/18.95
CoPINet 52.96/22.84 49.45/24.50 61.55/31.10  52.15/25.35  68.10/20.60 65.40/19.85 39.55/19.00 34.55/19.45

PrAE Learner 65.03/77.02 76.50/90.45 78.60/85.35 28.55/45.60 90.05/96.25 90.85/97.35 48.05/63.45 42.60/60.70

Human 84.41 95.45 81.82

86.36 81.81 86.36 81.81

Table 1. Model performance (%) on RAVEN / I-RAVEN. All models are trained on 2x2Grid only. Acc denotes the mean accuracy.
Following Zhang et al. [70], L-R is short for the Left-Right configuration, U-D Up-Down, O-IC Out-InCenter, and O-IG Out-InGrid.

Object Attribute Acc Center 2x2Grid 3x3Grid L-R U-D O-IC O-1G

Objectiveness 93.81/95.41 96.13/96.07 99.79/99.99 99.71/97.98 99.56/95.00 99.86/94.84 71.73/88.05 82.07/95.97
Type 86.29/89.24  89.89/89.33  99.95/95.93 83.49/85.96 99.92/92.90 99.85/97.84 91.55/91.86 66.68/70.85
Size 64.72/66.63 68.45/69.11 71.26/73.20 71.42/62.02 73.00/85.08 73.41/73.45 53.54/62.63 44.36/40.95
Color 75.26/79.45 75.15/75.65 85.15/87.81 62.69/69.94 85.27/83.24 84.45/81.38 84.91/75.32 78.48/82.84

Table 2. Accuracy (%) of the object CNN on each attribute, reported as RAVEN / I-RAVEN. The CNN module is trained with the PrAE
learner on 2x2Grid only without any visual attribute annotations. Acc denotes the mean accuracy on each attribute.

Panel Attribute Acc Center 2x2Grid 3x3Grid L-R U-D O-IC O-IG

Pos/Num 90.53/91.67 - 90.55/90.05 92.80/94.10 - - - 88.25/90.85
Type 94.17/92.15 100.00/95.00 99.75/95.30 63.95/68.40 100.00/99.90 100.00/100.00 100.00/100.00 86.08/77.60
Size 90.06/88.33  98.95/99.00  90.45/89.90 65.30/70.45  98.15/96.78 99.45/92.45 93.08/96.13 77.35/70.78
Color 87.38/87.25  97.60/93.75 88.10/85.35 37.45/45.65  98.90/92.38 99.40/98.43 92.90/97.23 73.75/79.48

Table 3. Accuracy (%) of the probabilistic abduction engine on each attribute, reported as RAVEN / I-RAVEN. The PrAE learner is trained

on 2x2Grid only. Acc denotes the mean accuracy on each attribute.

4.3. Analysis on Perception and Reasoning

RAVEN and I-RAVEN provide multiple levels of an-
notations for us to analyze our modularized PrAE learner.
Specifically, we use the region-based attribute annotations
to evaluate our object CNN in perception. Note that the ob-
ject CNN is not trained using any attribute annotations. We
also use the ground-truth rule annotations to evaluate the
accuracy of the probabilistic abduction engine.

Table 2 details the analysis of perception using the ob-
ject CNN: It achieves reasonable performance on object
attribute prediction, though not trained with any visual at-
tribute annotations. The model shows a relatively accurate
prediction of objectiveness in order to solve an RPM in-
stance. Compared to the size prediction accuracy, the ob-
ject CNN is better at predicting texture-related attributes
of type and color. The object CNN has similar results on
2x2Grid, L-R, and U-D. However, referencing Table 1, we
notice that 2x2Grid requires marginalization over more ob-
jects, resulting in an inferior performance. Accuracy further
drops on configurations with overlap, leading to unsatisfac-
tory results on O-IC and O-1G. For 3x3Grid, more accurate
predictions are necessary as uncertainties accumulate from
probabilities over multiple objects.

Table 3 details the analysis on reasoning, showing how
the probabilistic abduction engine performs on rule predic-
tion for each attribute across different configurations. Since
rules on position and number are exclusive, we merge their
performance as Pos/Num. As Center, L-R, U-D, and O-IC
do not involve rules on Pos/Num, we do not measure the
abduction performance on them. We note that, in general,
the abduction engine shows good performance on all panel
attributes, with a perfect prediction on type in certain con-
figurations. However, the design of abduction as probability
marginalization is a double-edged sword. While the object
CNN’s performance on size prediction is only marginally
different on 2x2Grid and 3x3Grid in RAVEN, their abduc-
tion accuracies drastically vary. The difference occurs be-
cause uncertainties on object attributes accumulate during
marginalization as the number of objects increases, even-
tually leading to poor performance on rule prediction and
answer selection. However, on configurations with fewer
objects, unsatisfactory object attribute predictions can still
produce accurate rule predictions. Note there is no guaran-
tee that a correct rule will necessarily lead to a correct final
choice, as the selected rule still operates on panel attribute
distributions inferred from object attribute distributions.
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4.4. Generation Ability

One unique property of the proposed PrAE learner is its
ability to directly generate a panel from the predicted repre-
sentation when a rendering engine is given. The ability re-
sembles the bi-directional top-down and bottom-up reason-
ing, adding a generative flavor commonly ignored in prior
discriminative-only approaches [17, 20, 53, 59, 70, 72, 75].
As the PrAE learner predicts final panel attribute distribu-
tions and is trained in an analysis-by-synthesis manner, we
can sample panel attribute values from the predicted distri-
butions and render the final answer using a rendering en-
gine. Here, we use the rendering program released with
RAVEN [70] to show the generation ability of the PrAE
learner. Fig. 3 shows examples of the generation results.
Note that one of our generations is slightly different from
the ground-truth answer due to random sampling of rota-
tions during rendering. However, it still follows the rules in
the problem and should be considered as a correct answer.

5. Conclusion and Discussion

We propose the Probabilistic Abduction and Execution
(PrAE) learner for spatial-temporal reasoning in Raven’s
Progressive Matrices (RPM) that decomposes the problem-
solving process into neural perception and logical reason-
ing. While existing methods on RPM are merely discrim-

inative, the proposed PrAE learner is a hybrid of genera-
tive models and discriminative models, closing the loop in
a human-like, top-down bottom-up bi-directional reasoning
process. In the experiments, we show that the PrAE learner
achieves the best performance on the cross-configuration
generalization task on RAVEN and I-RAVEN. The modu-
larized design of the PrAE learner also permits us to probe
into how perception and reasoning work independently dur-
ing problem-solving. Finally, we show the unique genera-
tive property of the PrAE learner by filling in the missing
panel with an image produced by the values sampled from
the probabilistic scene representation.

However, the proposed PrAE learner also has limits. As
shown in our experiments, probabilistic abduction can be
a double-edged sword in the sense that when the number
of objects increases, uncertainties over multiple objects will
accumulate, making the entire process sensitive to percep-
tion performance. Also, complete probability marginaliza-
tion introduces a challenge for computational scalability; it
prevents us from training the PrAE learner on more com-
plex configurations such as 3x3Grid. One possible solution
might be a discrete abduction process. However, jointly
learning such a system is non-trivial. It is also difficult
for the learner to perceive and reason based on lower-level
primitives, such as lines and corners. While, in theory, a
generic detector of lines and corners should be able to re-
solve this issue, no well-performing systems exist in prac-
tice, except those with strict handcrafted detection rules,
which would miss the critical probabilistic interpretations
in the entire framework. The PrAE learner also requires
strong prior knowledge about the underlying logical rela-
tions to work, while an ideal method should be able to in-
duce the hidden rules by itself. Though a precise induction
mechanism is still unknown for humans, an emerging com-
putational technique of bi-level optimization [10, 73] may
be able to house perception and induction together into a
general optimization framework.

While we answer questions about generalization and
generation in RPM, one crucial question remains to be ad-
dressed: How perception learned from other domains can
be transferred and used to solve this abstract reasoning task.
Unlike humans that arguably apply knowledge learned from
elsewhere to solve RPM, current systems still need training
on the same task to acquire the capability. While feature
transfer is still challenging for computer vision, we antici-
pate that progress in answering transferability in RPM will
help address similar questions [71, 74, 78] and further ad-
vance the field.
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