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Abstract

“Thinking in pictures,” [1] i.e., spatial-temporal reasoning, effortless and instanta-
neous for humans, is believed to be a significant ability to perform logical induction
and a crucial factor in the intellectual history of technology development. Modern
Artificial Intelligence (AI), fueled by massive datasets, deeper models, and mighty
computation, has come to a stage where (super-)human-level performances are
observed in certain specific tasks. However, current AI’s ability in “thinking in
pictures” is still far lacking behind. In this work, we study how to improve ma-
chines’ reasoning ability on one challenging task of this kind: Raven’s Progressive
Matrices (RPM). Specifically, we borrow the very idea of “contrast effects” from
the field of psychology, cognition, and education to design and train a permutation-
invariant model. Inspired by cognitive studies, we equip our model with a simple
inference module that is jointly trained with the perception backbone. Combin-
ing all the elements, we propose the Contrastive Perceptual Inference network
(CoPINet) and empirically demonstrate that CoPINet sets the new state-of-the-art
for permutation-invariant models on two major datasets. We conclude that spatial-
temporal reasoning depends on envisaging the possibilities consistent with the
relations between objects and can be solved from pixel-level inputs.

1 Introduction

Among the broad spectrum of computer vision tasks are ones where dramatic progress has been
witnessed, especially those involving visual information retrieval [2–5]. Significant improvement
has also manifested itself in tasks associating visual and linguistic understanding [6–9]. However, it
was only until recently that the research community started to re-investigate tasks relying heavily
on the ability of “thinking in pictures” with modern AI approaches [1, 10, 11], particularly spatial-
temporal inductive reasoning [12–14]; this line of work primarily focuses on Raven’s Progressive
Matrices (RPM) [15, 16]. It is believed that RPM is closely related to real intelligence [17], diagnostic
of abstract and structural reasoning ability [18], and characterizes fluid intelligence [19–22]. In such
a test, subjects are provided with two rows of figures following certain unknown rules and asked
to pick the correct answer from the choices that would best complete the third row with a missing
entry; see Figure 1(a) for an example. As shown in early works [12, 14], despite the fact that visual
elements are relatively straightforward, there is still a notable performance gap between human and
machine visual reasoning in this challenging task.

One missing ingredient that may result in this performance gap is a proper form of contrasting
mechanism. Originated from perceptual learning [23, 24], it is well established in the field of
psychology and education [25–29] that teaching new concepts by comparing with noisy examples is
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quite effective. Smith and Gentner [30] summarize that comparing cases facilitates transfer learning
and problem-solving, as well as the ability to learn relational categories. Gentner [31] in his structure-
mapping theory points out that learners generate a structure alignment between two representation
when they compare two cases. A more recent study from Schwartz et al. [32] also shows that
contrasting cases help foster an appreciation of a deep understanding of concepts.

We argue that such a contrast effect [33], found in both humans and animals [34–38], is essential to
machines’ reasoning ability as well. With access to how the data is generated, a recent attempt [13]
finds that models demonstrate better generalizability if the choice of data and the manner in which
it is presented to the model are made “contrastive.” In this paper, we try to address a more direct
and challenging question, independent of how the data is generated: how to incorporate an explicit
contrasting mechanism during model training in order to improve machines’ reasoning ability?
Specifically, we come up with two levels of contrast in our model: a novel contrast module and
a new contrast loss. At the model level, we design a permutation-invariant contrast module that
summarizes the common features and distinguishes each candidate by projecting it onto its residual on
the common feature space. At the objective level, we leverage ideas in contrastive estimation [39–41]
and propose a variant of Noise-Contrastive Estimation (NCE) loss.

Another reason why RPM is challenging for existing machine reasoning systems could be attributed
to the demanding nature of the interplay between perception and inference. Carpenter et al. [17]
postulate that a proper understanding of one RPM instance requires not only an accurate encoding
of individual elements and their visual attributes but also the correct induction of the hidden rules.
In other words, to solve RPM, machine reasoning systems are expected to be equipped with both
perception and inference subsystems; lacking either component would only result in a sub-optimal
solution. While existing work primarily focuses on perception, we propose to bridge this gap with
a simple inference module jointly trained with the perception backbone; specifically, the inference
module reasons about which category the current problem instance falls into. Instead of training the
inference module to predict the ground-truth category, we borrow the basis learning idea from [42]
and jointly learn the inference subsystem with perception. This basis formulation could also be
regarded as a hidden variable and trained using a log probability estimate.

Furthermore, we hope to make a critical improvement to the model design such that it is truly
permutation-invariant. The invariance is mandatory, as an ideal RPM solver should not change the
representation simply because the rows or columns of answer candidates are swapped or the order
of the choices alters. This characteristic is an essential trait missed by all recent works [12, 14].
Specifically, Zhang et al. [12] stack all choices in the channel dimension and feed it into the network
in one pass. Barrett et al. [14] add additional positional tagging to their Wild Relational Network
(WReN). Both of them explicitly make models permutation-sensitive. We notice in our experiments
that removing the positional tagging in WReN decreases the performance by 28%, indicating that the
model bypasses the intrinsic complexity of RPM by remembering the positional association. Making
the model permutation-invariant also shifts the problem from classification to ranking.

Combining contrasting, perceptual inference, and permutation invariance, we propose the Contrastive
Perceptual Inference network (CoPINet). To verify its effectiveness, we conduct comprehensive
experiments on two major datasets: the RAVEN dataset [12] and the PGM dataset [14]. Empirical
studies show that our model achieves human-level performance on RAVEN and a new record on
PGM, setting new state-of-the-art for permutation-invariant models on the two datasets. Further
ablation on RAVEN and PGM reveals how each component contributes to performance improvement.
We also investigate how the model performance varies under different sizes of datasets, as a step
towards an ideal machine reasoning system capable of low-shot learning.

This paper makes four major contributions:
� We introduce two levels of contrast to improve machines’ reasoning ability in RPM. At the model

level, we design a contrast module that aggregates common features and projects each candidate
to its residual. At the objective level, we use an NCE loss variant instead of the cross-entropy to
encourage contrast effects.

� Inspired by Carpenter et al. [17], we incorporate an inference module to learn with the perception
backbone jointly. Instead of using ground-truth, we regularize it with a fixed number of bases.

� We make our model permutation-invariant in terms of swapped rows or columns and shuffled
answer candidates, shifting the previous view of RPM from classification to ranking.

� Combining ideas above, we propose CoPINet that sets new state-of-the-art on two major datasets.
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Figure 1: (a) An example ofRPM. The hidden rule(s) in this problem can be denoted asf [OR; line; type]g,
where an OR operation is applied to the type attribute of all lines, following the notations in Barrett et al.[14].
It is further noted that the OR operation is applied row-wise, and there is only one choice that satis�es the
row-wise OR constraint. Hence the correct answer should be5. (b) The proposed CoPINet architecture. Given a
RPM problem, the inference branch samples a most likely rule for each attribute based only on the contextO of
the problem. Sampled rules are transformed and fed into each contrast module in the perception branch. Note
that the combination of the contrast module and the residual block can be repeated. Dashed lines indicate that
parameters are shared among the modules. (c) A sketch of the contrast module.

2 Related Work

Contrastive Learning Teaching concepts by comparing cases, or contrasting, has proven effective
in both human learning and machine learning. Gentner[31] postulates that human's learning-by-
comparison process is a structural mapping and alignment process. A later article [43] �rmly supports
this conjecture and shows �nding the individual difference is easier for humans when similar items
are compared. Recently, Smith and Gentner[30] conclude that learning by comparing two contrastive
cases facilitates the distinction between two complex interrelated relational concepts. Evidence
in educational research further strengthens the importance of contrasting—quantitative structure
of empirical phenomena is less demanding to learn when contrasting cases are used [32, 44, 45].
All the literature calls for a similar treatment of contrast in machine learning. While techniques
from [46–48] are based on triplet loss using max margin to separate positive and negative samples,
negative contrastive samples and negative sampling are proposed for language modeling [40] and
word embedding [49, 50], respectively. Gutmann and Hyvärinen[39] discuss a general learning
framework called Noise-Contrastive Estimation (NCE) for estimating parameters by taking noise
samples into consideration, which Dai and Lin[41] follow to learn an effective image captioning
model. A recent work [13] leverages contrastive learning inRPM; however, it focuses on data
presentation while leaving the question of modeling and learning unanswered.

Computational Models on RPM The cognitive science community is the �rst to investigateRPM
with computational models. Assuming access to a perfect state representation, structure-mapping
theory [31] and the high-level perception theory of analogy [51, 52] are designed with heuristics to
solve theRPM problem at a symbolic level [17, 53–55]. Another stream of research approaches the
problem by measuring the image similarity with hand-crafted state representations [56–60]. More
recently, end-to-end data-driven methods with raw image input are proposed [12–14, 61]. Wang and
Su[61] introduce an automaticRPMgeneration method. Barrett et al.[14] release the �rst large-scale
RPM dataset and present a relational model [62] designed for it. Steenbrugge et al.[63] propose a
pretrained� -VAE to improve the generalization performance of models onRPM. Zhang et al.[12]
provide another dataset with structural annotations using stochastic image grammar [64–66]. Hill
et al. [13] take a different approach and study how data presentation affects learning.

3 Learning Perceptual Inference by Contrasting

The task ofRPM can be formally de�ned as: given a list of observed imagesO = f oi g8
i =1 , forming

a3 � 3 matrix with a �nal missing element, a solver aims to �nd an answera? from anunorderedset

3


	Introduction
	Related Work
	Learning Perceptual Inference by Contrasting
	Contrasting
	Model-level Contrast
	Objective-level Contrast

	Perceptual Inference
	Architecture

	Experiments
	Experimental Setup
	Results on RAVEN
	Results on PGM

	Conclusion and Discussion

