MetaStyle: Three-Way Trade-Off Among Speed, Flexibility and Quality

in Neural Style Transfer

Chi Zhang, Yixin Zhu, Song-Chun Zhu International Center for AI and Robot Autonomy {chizhang, yzhu, sczhu}@cara.ai

MetaStyle

Training

minimize

subject to

$$\mathbb{E}_{c,s}[\ell(I_c, I_s, M(I_c; w_{s,T}))]$$

$$w_{s,0} = \theta$$

$$w_{s,t} = w_{s,t-1} - \delta \nabla \mathbb{E}_c[\ell(I_c, I_s, M(I_c; w_{s,t-1}))]$$

Adaptation minimize

$$\mathbb{E}_c[\ell(I_c, I_s, M(I_c; w))]$$

Framework

Motivation

Method	Speed	Flexibility	Quality	Drawback	
Optimization-based	Slow	Any	High	Run for each content-style pair	
Fast approximation	Fast	Single	High	Train long for each new style	
Feature matching	Fast	Any/Several	Compromised	Limited set of styles, low quality	

 $w_{s,t} = w_{s,t-1} - \delta \nabla \mathbb{E}_c[\ell(I_c, I_s, M(I_c; w_{s,t-1}))]$ Can we find a style transfer algorithm that could quickly adapt to any style, while the adapted model maintains high efficiency and good image quality?

Comparison with Prior Arts

Style Interpolation

Video Style Transfer

Quantitative Results

Method	Param	256 (s)	512 (s)	# Styles
Gatys et al.	N/A	7.7428	27.0517	∞
Johnson et al.	1.68M	0.0044	0.0146	1
Li et al.	34.23M	0.6887	1.2335	∞
Huang et al.	7.01M	0.0165	0.0320	∞
Shen et al.	219.32M	0.0045	0.0147	∞
Sheng et al.	147.22M	0.5089	0.6088	∞
Chen et al.	1.48M	0.2679	1.0890	∞
Ours	1.68M	0.0047	0.0145	∞^{\star}

Investigate the Representation

Compare with Gatys *et al.* using contents preprocessed by MetaStyle

Compare with Johnson *et al.* using network initialized by MetaStyle