(Google Research

chi.zhang@ucla.edu,

lijuanliu@google.com,

Xiaoxue Zang>* Frederick Liu?

* work done while at Google

zxx1204007dgmail.com,

DETR++: Taming Your Multi-Scale Detection Transtormer
Chi Zhang!>* Lijuan Liu? Hao Zhang® Xinying Song?

I Department of Computer Science, University of California, Los Angeles * Google Research

Jindong Chen?

Motivation

backbone :: h
!

%

transformer .:

decoder !

II

!

|
' set of image featur es
¥
||
||
) ! B OO o0

... ::

|

|
:‘ : | .[::
| I
| ':
1= _ L
| 7
: T
|
|
object queries

transformer
encoder

Model GFLOPS/FPS #params AP AP5y APr;

30.0 605 42.3
402 610 43.8 =
120 625 459 *

Faster RCNN-DC5
Faster RCNN-FPN
Faster RCNN-R101-FPN

320/16 166M
180/26 42M
24620 60M

411 614 443 =
42.0 621 455 =
44.0 639 47.8 :

Faster RCNN-DC5H+
Faster RCNN-FPN+
Faster RCNN-R101-FPN+

320/16 166M
180/26 42M
246/20 60M

42.0 624 442
43.3 631 459 =
435 638 464 :
44.9 64.7 477 &

DETR
DETR-DC5
DETR-R101
DETR-DC5-R101

86/28 41M
187/12 A1M
152/20 60M

253/10 60M = 49.5 62.3

Despite the simpler design in the DETR architecture,
earlier experimental results show that the DETR
model 1s inferior to existing convolutional models and
slower 1n training.

* The self-attention mechanism 1n the encoder 1s
resource-hungry, especially for visual features that
could span over thousands of tokens.

* The Hungarian matcher 1s cubic 1n time.

These slow operations make the common strategy of

adding multi-scale features 1n a detector to improve

performance a non-trivial work: conventional
methods are extremely memory- and time-consuming.

Multi-Scale Designs

Removing the Encoder: We consider the following two options.

* Stack: In this stacking strategy, we consecutively apply three decoders on the
image features from C3, C4, and C5. The decoded output from C3 1s further
processed by the decoder for C4, followed by the C5 decoder.

* Multi-Head: We use three six-layer decoders for each resolution similarly to the
stacking method. However, unlike the stacking method, each decoder
independently produces the box proposals from a single scale.

Shifted Windows: We apply the Transformer detection head on each shifted window.

Specialized Heads: We use three detection heads for small objects, medium objects,
and large objects, respectively. All the detection heads operate on the C5 features.
Bi-directional Feature Pyramid: We aggregate multiple features using a BiFPN.

— — —
T e .
*

Remaining Issues

There 1s still room for improvement small object detection. These gaps further
motivate us 1n pursuing this direction to make Transformer-based detectors a first-
class citizen.

Convergence speed of Transformer detectors 1s slower than existing baselines. This
slow-down significantly impacts model 1teration. And we notice few of the recent
acceleration methods bring the model to the optimal point from the plain one.

{frederickliu, haozhangthu, xysong, jdchen}@google.com

DETR++
B ———* B [* B » Pred
| | |
> B - - - -~ === === ===~ » F
= P P
BN N
Benchmarking
Performance on MS COCO 2017
Method AP APQ0.5 APQ@0.75 APL APM AP°
DETR-NoEnc-Stack 37.3 56.8 39.7 H4.4 40.6 16.9
DETR-NoEnc-MHead 35.0 54.9 30.3 52.0 37.5 14.6
DETR-Swin 39.9 59.8 42.2 57.9 43.0 18.4
DETR-SHead 36.4 54.0 39.2 4.7 39.5 15.1
DETR-++ 41.8 00.1 44.6 58.6 45.0 22.1
DETR 39.9 59.8 42.4 57.2 43.3 18.8
CenterNet 41.6 59.4 44.2 4.1 43.1 22.5
Performance on RICO 1con detection
Method AP AP@0.5 APQ@0.75 APL APM APS
DETR++ 48.1 89.8 45.3 52.9 49.6 43.6
DETR A7 4 9.4 44.3 52.0 48.8 43.1
IconNet 36.6 79.3 26.8 151 35.6 36.8
Performance on RICO layout detection
Method AP APQ@0.5 AP@0.75 APL APM AP°
DETR++ 25.3 43.6 24.2 28.6 9.7 14
DETR 24.7 42.5 23.4 28.0 8.1 1.1
TconNet 16.2 30.5 15.9 198 86 5.6

